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ABSTRACT

This paper presents a framework for developing com-

putationally unified numerical algorithms for solving non-

linear equations that arise in modeling various problems in

mathematical physics. The concept of computational unifi-

cation is an attempt to encompass efficient solution proce-

dures for computing various nonlinear phenomena that may

occur in a given problem. For example, in Computational

Fluid Dynamics (CFD), a unified algorithm will be one that

allows for solutions to subsonic (elliptic), transonic (mixed

elliptic-hyperbolic), and supersonic (hyperbolic) flows for

both steady and unsteady problems. The objective of the

work reported in this paper is manyfold: l) development of

superior unified algorithms emphasizing accuracy and effi-

ciency aspects; 2) development of codes based on selected

algorithms leading to validation; 3) application of mature

codes to realistic problems; and 4) extension/application of

CFD-based algorithms to problems in other areas of math-

ematical physics. The ultimate objective is to achieve in-

tegration of multidisciplinary technologies (stealth, propul-

sion, aeroelasticity, ...) to enhance synergism in the design

process through computational simulation.

The paper presents specific unified algorithms for a hi-

erarchy of gasdynamic equations (full potential, Euler, and

Navier-Stokes) and their applications to a wide variety of

problems. Also included are extensions of the CFD meth-

ods to two other areas: l) electromagnetic scattering, and

2) laser-material interaction accounting for melting.

INTRODUCTION

Along with rapid strides in algorithm and code de-

velopment, the increasing power of super-minicomputers,

supercomputers, and graphics workstations is rapidly ad-

vancing the state of the art of computational simulation

of problems in mathematical physics. One area that is set-

ting the pace is Computational Fluid Dynamics. Other dis-

ciplines such as electromagnetic scattering, semiconductor

device/process modeling, material characterization, etc.,

are starting to benefit from the CFD experience.

Modern vehicle concepts such as the Advanced Tacti-

cal Fighter (ATF) attempt an effective compromise between

the transonic maneuver and supersonic cruise conditions.

Multiple design considerations of this type impose strin-

gent constraints on the aerodynamic shape of the vehicle to

achieve high buffet-free lift performance with reduced trim

drag. The recent resurgence of the hypersonics program

through the National Aerospace Plane (NASP) project also

demands analysis and design of vehicles with requirements

to fly through the entire Mach number range (subsonic to

hypersonic) requiring increasingly sophisticated nonlinear

methods to better understand various gasdynamic flow pro-

cesses.
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The Navier-Stokes equations best represent the phys-

ics of nonlinear flow. However, limitations in memory and

execution speed of present-day supercomputers restrict the

routine use of Navier-Stokes methods. For wider applica-

tion of CFD in the aerospace industry, cost-effective meth-

ods based on less exact forms of gasdynamic equations, such

as the Euler and full potential equations, are still attrac-

tive. The objective of the work reported in this paper is

to develop, for all speed regimes, efficient, accurate, and

robust nonlinear methods for equations ranging from the

simple full potential to the complex Navier-Stokes. De-

velopment of such a spectrum of hierarchical capability is

critical for efficient and cost-effective design of aerospace

configurations. The general philosophy of numerical design

through progression of increasingly sophisticated nonlinear

tools is illustrated in figure l, and represents a summary of

the numerical design experience at Rockwell covering the

HiMAT, forward swept wing, SAAB, and Air Force/Navy

Research Technology contract studies 1-4.

Referring to figure l, in designing a configuration, lin-

ear theory 5,e is first used to establish candidate optimum

thickness, twist, camber, and variable camber deflections

at supersonic speeds. Second, nonlinear methods (full po-

tential and Euler) are employed to capture embedded shock

waves at transonic _-14 and supersonic is-21 conditions and

weaken the wave system through parametric redesign.

Boundary layer analysis 22 and Navier-Stokes codes 2a-26

are subsequently used to assess the flow quality of the non-

linear inviscid design. The extent of separation in particu-

lar is evaluated, and a subsequent redesign is performed to
minimize its extent.

NUMERICAL DESIGN APPROACH
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Fig. 1. Progression of improved design through nonlin-

ear analysis.
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At Rockwell, the computational activity is carried out

on several fronts. 1) Algorithm development. Under this

task, several algorithmic issues such as higher order space/

time accuracy, efficiency, multizone gridding concepts,

multigrid cycling, upwind total variation diminishing

(TVD) schemes, vectorization concepts, implicit/explicit

methods, etc., are stressed. The primary thrust of this ac-

tivity is computational unification of methodologies encom-

passing efficient solution procedures for computing various

flow phenomena occurring across the Mach number range.

2) Code development. Under this task, selected algorithms

(based on the study from task l)) with potential to mature

into a production code capability are further developed and

undergo extensive validation. Some of the issues stressed

in this phase are computational efficiency through code

vectorization, user orientation/documentation, code trans-

portability, graphics interface, and user training. 3) Appli-

cation. At this stage, codes from task 2) that have matured

into a production code with established user confidence, are

applied to study a wide range of realistic problems to bet-

ter understand flows over existing configurations (Shuttle

Orbiter, B-1B, etc.) as well as to design aerospace config-

urations for the next generation (ATF, NASP, Transatmo-

spheric Vehicles (TAV), etc.). 4) Extension of CFD

methods to non-CFD problems. Under this task, a host of

problem areas in mathematical physics that are governed

by appropriate partial differential equations is dealt with.

The techniques developed for studying problems in Compu-

tational Fluid Dynamics are well suited for studying prob-

lems in electromagnetic scattering, laser-material interac-

tion, and semiconductor device/process modeling, just to

name a few.

Computational Fluid Dynamics is rapidly advancing.

Its methods are beginning to influence how problems are

and can be effectively solved in other disciplines. As this

process of spreading the wealth of CFD knowledge to other

areas continues, the CFD discipline is expected to play a

key role in the future, together with state-of-the art com-

puters, in integrating multidisciplinary technologies to en-

hance synergism in the design process through computa-
tional simulation.

The paper presents a brief summary of some of the

unified algorithms developed for various gasdynamic equa-

tions, along with their applications to many fluid dynamic

problems. Also presented are some applications of CFD

methods to non-fluid dynamic problems. More details on

the algorithmic aspects of the unified concept can be found
in the references.

This paper represents a collection of work performed

by many researchers in the Computational Fluid Dynamics

Department at Rockwell International Science Center.

EQUATIONS IN CONSERVATION FORM

For many problems in mathematical physics, the phys-

ical process to be modeled is governed by an appropriate

set of linear or nonlinear partial differential equations. For

example, many fluid dynamic processes are governed by

the Navier-Stokes equations, the electromagnetic scatter-

ing from objects is modeled by Maxwell's equations 2r, and

problems in semiconductors are governed by Van Roos-

broeck _a equations involving the nonlinear coupling be-

tween the electrostatic potential and the electron/hole den-

sity.

In general, many of these equations naturally lend

themselves to a conservation form representation given by

Qt + Ex + F_ +Gz=O (1)

where the dependent variable vector Q, and the fluxes E,

F, and G take on different forms depending on the equation

being modeled. The form of Q, E, F, and G for the full

potential, Euler, Navier-Stokes, and the Maxwell equations

are presented in the subsequent sections. Application of

eq. (1) to many realistic problems requires a coordinate

transformation to properly represent the physical domain

of interest and to aid in the boundary condition treatment.

Under the transformation of coordinates implied by

r = t, _ = _(t, _:,y,z),¢ = ,fit, z,u,z),¢ = dt, z,y,z),

eq. 1 can be recast in the conservation form given by

where

_, +_¢ +ft. +_ = o ,

-- q
Q=-j ,

_t _ _F + _-_ = 7Q + 7E + 7G

_-Q+-fE+ j j

-d = +-if+_)Q + _E fy _G

(2a)

(2b)

where, in turn, J is the Jacobian of the transformation

j=a(_,_,¢)la(z,y,z) (2c)

and

5 = -(&:_, + (yy, + ¢_z,)

tit = -(_z, + _yy, + _zz,)

Ct= -(¢xx, + ;yy, + ;zz,)

(2d)

Associating the subscripts j, k, ! with the _¢,rl, f direc-

tions, a numerical approximation to eq. (2a) may be ex-

pressed in the semi-discrete conservation law form given by

(fii,_,,),+ (#,+,/_,_,,- #_-,/_,_,,)
+ (_,.,_+,/_,,- #j,__,/,,,)

+ (dj, k,t+ll2 - G_,k,t-l/2) = 0

(a)

where E, F, (_ are numerical or representative fluxes at the

bounding sides of the cell for which discrete conservation is

considered, and Qj, k,t is the representative conserved quan-

tity (the numerical approximation to Q) considered conve-

niently to be the cenb'oidal value. The half-integer sub-

scripts denote cell sides and the integer subscripts the cell

itself or its centroid.
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Thesemi-discreteconservationlawgivenbyeq.(3)
mayberegardedasrepresentingafinitevolumediscretiza-
tionif thefollowingassociationsaremade:

0s, k,_= Q V_',k,l

where V is the volume of the cell under consideration;

nx,y,z{(k - 1/2,l- 1/2),(k + l/2,l- 1/2),

(k + 1/2,1 + 1/2),(k - l/2,l + 1/2)}5+1/2

( _Tz,y,z _

J ]k+1/2

n=,y,z((j - 1/2,1- 1/2),(j - 1/2,/+ 1/2),

(j + 1/2,1 + 1/2),(i + 1/2,1- 1/2)}k±1/2

_z,y,z _

J /1+112

(4a)

nx,_,z{(j - 1/2, k- 1/2),(.?" + l/2,k- 1/2),

(j + 1/2, k + 1/2),(j - 1/2, k + 1/2)}z±,12 ;

(4b)

J-(t y+t/2 = - (J-)Y±ll2(X')i+l/2

=- (_')k:_112(z,)k+ll2
J k_-1/2 (4c)

--(_f)k+U2(Y,)kil/2 '1_- (--j-)k±ll2(Z,)k+ll2

(_)'_:'1' ¢"=- (7)H-II2(Z,),.HI2

fy f_
-(_)t-,-_/2(y,-)l_/,_ - (-y)l+_/_(z,h+_/2

In the above, n:_,_,z are the x, y, z components of the repre-

sentative normals to the surface formed by the four points

a, b, c, d implied in n:_,y,_(a, b, c, d). These four points are

not necessarily coplanar. Also, (x,, y,, z,)5_l/2,_±l/2,t±l/2

are the x, y, z components of the appropriate cell-face rep-
resentative ve!ocities. These describe the motion of the cell

face and will be zero for a stationary grid. In the following,

we can use the notation nt to describe the representative
cell-face normal velocities:

_t

(_tt) Jd: 112 = I-J-) 3._;. 1 / 2

rh

(Y%t)k'l-l/2 "_ ('j ) k+ l/2

¢t
(FI'I)|q-l12 = (j)I..t.112

(4d)

The evaluation of the volume, cell-face normals and

cell-face normal velocities (metrics) are presented in
Ref. 14.

Within this framework of a finite volume representa-

tion, the concept of a unified algorithm/solver addresses

two issues: 1) representation of the numerical fluxes _', F,

and (_ to account for different physical phenomena to be

encountered in the problem being modeled (for example, in

fluid dynamics, a unified flux representation will allow for

subsonic, transonic, and supersonic flow situations for both

steady and unsteady, including proper transition through

shocks and sonic rarefaction); and 2) numerical issues of

solving eq. (3). Under the numerical issue, a unified algo-

rithm will be one that performs both the space and time

integration within the logic of a single solver. A unified
solution treatment will allow one to consider a wide class

of problem areas within the capability of a single code. For

example, in fluid dynamics, a unified solver will perform

space marching for supersonic flows (supersonic flow direc-

ti()n is treated as time like) and allow time marching for

subsonic, transonic, and unsteady flows.

The objective is to solve eq. (3) for the dependent vec-

tor Q. After incorporation of proper flux representation,

the discrete form of eq. (3) can be written as

R(Q) = 0. (5)

If Q is known at a known neighborhood state, denoted by

Q*, then solution to eq. (5} can be written as

OR

-_(Q - Q*) = -R(Q') (6)

where o_, in general, is a differential operator. Many

numerical algorithmic issues such as implicit, explicit, re-

laxation, approximate factorization, algorithm unification,

etc., come into play in the modeling of the differential op-

OR Issues such as higher order accuracy, propererator _-_.

upwinding, etc., come into _-_°_as well as in the modeling of

the right hand side R(Q*). For a unified code that accounts

for both space and time marching, one option is to split the

o__goperator in the formOQ

_R

= L. (7)
where

L. = L. [(., , L, = L, [(., ¢].

Equation (7) represents a double approximate factorization

in the 07, f) plane with relaxation in the _-direction as-

sumed to represent the predominant flow direction. The

grouping (_, _) in the L, and L_ operator represents a col-

lection of terms involving time and _ derivative terms. For

time marching, the time-step-size Ar is chosen to main-

tain the stability and accuracy of the operator, eq. (7). For

space marching, Ar is usually set very large and the oper-

ator L_ becomes L_(_, _?) and L_. = L_(_, f) representing _¢

as the marching direction. Space marching along _¢ is pos-

sible only if the equation is hyperbolic with respect to that

direction. A code that is based on the unified solver will

include the following options:

8R _
-_ - L¢ (f, _)L, (_, r)L_ (_, r) - Triple approxi-

mate factoriza- (8a)
tion with time

marching

-- L, [(,,¢),,)] L, [(,, - Double approxi-

mate factoriza-

tion with time

marching

(Sb)
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O__RR= Ln(_, r/)L_ (_, v/) - Space marchingoQ
along _ setting (8c)
Ar --* oo.

If one employs an upwind differencing, _Q can also be rep-
resented by a Gauss Siedel relaxation maintaining diagonal
dominance. More discussions on these ideas can be found

in Refs. 12, 19, and 20.

For time marchifig, Q* is usually set to be Qn as a

first guess where Q'_ is the solution at the previous time

plane. For space marching, Q* is initially set to be Qi-I

representing the solution at the previous space marching

plane in the _ direction. Starting from the initial guess

for Q*, eq. (6) is iterated to convergence driving II Q -
Q* II to some preset small value at every time or space

marching plane. Usually, this process might involve only a
few iterations.

The issue of numerical flux representation is dealt with

in the subsequent sections for a variety of equations, namely

1) full potential, 2) Euler, 3) Navier-Stokes, 4) Maxwell,

and 5) incompressible Navier-Stokes, representing the
laser-material interaction.

Full Potential Equation

The full potential equation represents the inviscid, iv-
rotational, and isentropic flow. In spite of these assump-

tions, this form of the gasdynamic equation is widely in

use for analyzing complex configurations at transonic and

low supersonic Mach numbers. As long as the shocks are

weak (Mach number normal to a shock surface less than

1.3 to 1.5), the full potential isentropic shocks will be in

agreement with the Rankine-Hugoniot jump conditions.

Referring to eq. (l), the full potential equation takes

the form Q = p, E = pu, F =- pv, and G = pw, where p

is the density and u, v, and w are the Cartesian velocities.

All the quantities p, u, v, and w are expressible in terms

of a single scalar function _, the velocity potential. Using

Bernoulli's law, the density p is given by

"/-1
pT-I = 1 - ---_ [2¢r + (U + _t)_b{ (9)

+ (v + _t)¢. + (w + _t)¢_- 1]

and U, V, and W are the contravariant velocities.

Referring to eq. (3), modeling of the time term Or

will require time linearization for density to express AQ in

terms of A¢ = ¢ - ¢*. The density linearization is given

by

(ap) A¢ (10)p = p(¢.)+ _ ,=,.

(11)

is a diffdrential operator.

Equation (3) also requires evaluation of E, F, and (_

at various spatial half node points. As mentioned earlier,

_' represents E appearing in eq. (2a).

The concept of developing a unified full potential

scheme stems from a ]_roj_erdefinition for the numerical or
representative fluxes E, F, G at cell interfaces derived from

the theory of characteristic signal propagation. Depending

on the type of flow at the cell interface (subsonic, transonic,

or supersonic), the fluxes are properly defined employing an

upwind bias to eliminate numerical or spurious (unphysical)

oscillations by satisfying entropy conditions (no expansion

shocks).

Based on the characteristic system at a cell interface

in the time-space domain, the following different flux rep-
resentations are made.

Subsonic at cell face j + 1/2 (U < c ax/h-_ )

Ey+I/2 = Ey+I/2 (zero biasing)

Transonic at j+1/2 (U<c a_'-h-_- , q>c)

E./+l/2 = _j+1/2 (to be defined later) (12)

Supersonic at j + 1/2 (U > c a,fh-_)

Ej+l/2 = E--j-I�2 (upwind biased flux)

In eq. (12), c is the speed of sound and all = (_+_¢u2+_z2).

The transonic flux E is defined in terms of an upwind biased

density based on flux biasing. Define

1[ {UOVOWO} ]= q (pq) + -_-_ + -_-_-_ + -_-_ (pq)- (13)

where Q = x/U 2 + V 2 + W _.

The quantity (pq)- appearing in eq. (13) is defined to

be

(pq)- = pq -- p'q* if q > q*
(14)

= 0 if q _< q*

The quantities p'q*, p*, and q* represent sonic values

of the flux, density, and total velocity, respectively. These

sonic conditions are given by (using the density and speed

of sound relationships)

(q.)_ = 1+ _-_M_ (1 - 2¢, - 2_t¢_- 2,_, - 26¢_)

p* = (q'Moo) 2/('_-1).

(15)

Note that for steady flows, the sonic conditions p* and

q* are only a function of the freestream Mach number, and

for a given flow they are constants. For unsteady flows, p*

and q* need to be computed everywhere due to the presence

of ¢_ and other unsteady terms in eq. (15).
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In the finaldiscretizedform, the fullpotentialequation

is written in the form of eq. (6) with A¢ = (_b - _b*) as a

single unknown at a grid point.

Some results are presented to illustrate the unified full

potential capability in computing subsonic, transonic, and

supersonic steady/unsteady flows.

lh111Potential Results

Supersonic Flows -- Supersonic flows are computed using

the marching option within the unified solver.

Figure 2 shows the surface gridding along with cross-

plane field grid points for a typical advanced generic fighter.

The body-fitted grid is generated at every marching plane

using standard elliptic grid solvers. Figure 3 shows pres-

sure contours at two different axial stations at Moo = 1.6,

a = 4.94 °. The crossplane geometry in figure 3 clearly

shows the fuselage, vertical tail, wing, and the flow through

nacelle along with the wake cut behind the trailing edge of

the wing. Figure 4 shows pressure correlation between the

computations and experimental data at two different span

stations. Table 1 gives correlations for overall force and

moment coefficients for different angles of attack and side

slip angles. The impact of CFD on the development of ad-

vanced configurations is illustrated in figure 5. It shows

the L/D pcrformance for the configuration of figure 2 for

across the Mach number range and compares that perfor-

mance with existing fighters such as the F-14 and the F-15.

A 25% to 50% increase in L/D is demonstrated.

Figure 6 shows a complex fighter configuration with

canard, wing, vertical tail, swept-side-walled flow through -0.6

nacelle, and a canopy. The gridding at different axial sta-

tions is shown. Figure 7 shows the pressure contours at -0.4

different marching planes at Moo -- 2.0, a = 4 °. A com-

parison of overall force and moment coefficients is given -0.2
in Table 2. Figure 6 illustrates the extent of geometric

complexity that can be handled by the full potential code
¢_ 0,0

for supersonic flows. However, for transonic and subsonic

flows where the computational domain has to extend far

upstream and far downstream of the configuration, the re-

quirement for a global three-dimensional grid makes treat-

ment of complex configurations more formidable.

Fig. 3. Pressure contours at two different axial stations.
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Fig. 4. Chordwise pressure distribution at 60% and 80%

span stations; Moo -- 1.6, a -_ 1.24 °.
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Transonic Flows -- Figure 8 shows results for a canard-

wing configuration at transonic Mach numbers. A wake

cut is created between the trailing edge of the canard and

the leading edge of the wing, as well as behind the trail-

ing edge of the wing. For steady transonic computations,

triple approximate factored time marching is performed un-

til steady state is reached. A typical computation such as

the one shown in figure 8 requires 100 to 200 time iterations

requiring 60 seconds of CPU time on a CRAY-X/MP for

80,000 grid points.

_- ,,
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<;
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k • •

SPAN - 64%

M - 0.6

SPAN - 64%

Fig. 8. Pressure correlations for a transonic canard-

wing configuration.

Static AeroeJastlc -- Figure 9 illustrates a static aeroelastic

computation for a flexible wing. The structural response is

modeled using a generalized modal representation 9. Within

the aeroelastic model, a rigid wing is represented by set-

ting the dynamic pressure to be zero. The magnitude of

the structural deflection depends on the level of prescribed

dynamic pressure and the generalized mode shapes. For

an aeroelastically stable configuration, the tip load is re-

duced once the wing undergoes static deflection. This is

illustrated in figure 9 which shows the deflected wing shape

along with the upper and lower surface pressures. Figure l0

shows the CL versus a variation taking into account static

flexibility.
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Fig. 11. Dynamic flexible computations for different dy-

namic pressures; a) below flutter, b) at flutter

point, and c) above flutter point.

Dynamic Aeroelastic -- Figure 11 shows dynamic flexible

computations for three different dynamic pressure levels.

Dynamic computations are performed as time-dependent

calculations coupling the nonlinear aerodynamics and the

structural response at a given time level invoking a time-

accurate, Newton iteration procedure 9. For a dynamic

pressure level below the flutter point, the wing is aeroe-

lastically stable as indicated by the decaying amplitude of

oscillation in CL, tip deflection, and tip a as a function of
time in figure lla. Figure 11b shows the calculation near

flutter point with zero damping of the amplitude while fig-

ure l lc shows results of aeroelastic divergence above the

flutter point.

Euler Equations

Referring to eq. (1), the Euler equations are given by

) (e+ p).

pt;

Q= pu ,E= pu 2+p ,

pv pvu

pw pwu
(16)

,w /F= I puv I,G= puw .

_ pv' + , / pvw
_, pwv / pw u + p )

In the above, pressure is p computed from p = (e - p(u u +

v 2 + w2)/2))(? - 1), density is p, Cartesian x,y,z veloc-

ity components are u,v,w, and the total energy per unit

volume is e.

In order to define the appropriate numerical fluxes E,

F, (_, an upwind biased scheme based on Roe's approximate

Riemann solver 29 is employed.

At every cell interface m+ 1/2, let +Qm+z/2 and Q_n+I/2

denote the values of the dependent variables defined just to

the right of and just to the left of the cell face. These

values will be defined in the next subsection using a To-

tal Variation Diminishing (TVD) formulation. The Rie-
mann Solver is a mechanism to divide the flux difference

between these neighboring states (between Q++z/2 and

Q_n+I/2) into component parts associated with each wave
field. These can in turn be divided into those that cor-

respond to positive and negative wave speeds. When we

compute the numerical flux at the cell face at m + 1/2, in

the finite-volume formulation, we will only use the cell-face

normals defined at m + 1/2 in the terms contributing to

that representative flux. The actual fluxes E,F,G, when

evaluated with the metrics equated to cell-face normals, can

all be written in the same functional form given by

S,F,G = f(Q,n=,n_,nz) = I(Q,N) (17)

where the appropriate values of n=, nv, n= are used and N

denotes the set of those normals. Using such notation, it is

possible to present the necessary algebra very concisely.

Let us first denote the Jacobian matrix of the flux f

with respect to the dependent variables Q by Of/aQ. This

Jacobian can also be called the coefficient matrix. Let us

denote the eigenvalues of the coefficient matrix by ,V" and

the corresponding left and right eigenvectors by £i and r i,
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respectively.The matrix formed by the left eigenvectors as

its rows is then called the left eigenvector matrix L and the

matrix of right eigenvectors comprising the right eigenvec-

tors as its columns is R. For our purposes, we choose an

orthonormal set of left and right eigenvectors which implies

that LR = RL = I, the identity matrix. In the above, the

superscript i has been used to denote the association of the

i-th eigenvalue with its corresponding eigenvector. Each

eigenvalue is also associated with its own wave field.

The underlying upwind scheme is based upon Roe's ap-

proximate Riemann solver. In this approach, cell interface

values of density, velocities, and enthalpy (h = _P/((7 -

1)p) + (u 2 + v 2 + w2)/2) are computed using a special av-

eraging procedure 14.

Knowing the cell interface values, the eigenvalues and

orthonormal set of left and right eigenvectors corresponding

to a cell face can be computed. These may be denoted by

= "_,,,+i12(Q_+x12,N,,,+_I2),

I_+ii 2 = L.,,+aI2(Q,,,+II2,N,.+I12),

,-'+_/_ = ,-_+,/_(Q,,,+,/_, N.,+_/_).

(18a)

At each cell face, the positive and negative projections

of the eigenvalues may be defined by

i

,_+= (_',,,+_/2+ I'_+_/21),i = 1,...,5
2

Now, the numerical flux jTm+z/2 is constructed from

A

f,_+1/2

1r . + ]= - LftQ,,,+_12,N,,,+ll2)+ f(Q_+I/2,Nm+z/2)2

I (Am+l/2 -- Am.{_i/2) Olm+l/2rm+ll 22

= f(O_+112, Nm+U2) + Z i- i i_m+ l /20_rn+ l /2rm+ l /2

i

+ /y xi+ i i=/(Q.,+I/_, ,,,+1/2) - )--_.,,,,+1/2o',,,+1/2",,,+1/2

(18b)

i

(19)
In the above equation,

,_+1/_ = e" +,.+,/2(Q,.,+,/2 - q_+_12)" (20)

We can construct upwind-biased schemes of varying

accuracies by properly defining the left and right states

used in the last subsection. We present here a family of

schemes. For use in what follows, let us now define

_+_/2 = e.,(q_+_ - q_),
(21)

__,/_ = e..(Q., - Q__,),

where

l_ = ei(q_, (N,_+I12 + Nm-U2)I2)

Next, we define the slope-limited values given by

(22)

o_,,,-1/21,
Z,i

am_U2 = minmod[F__Uz , b ^io',,,+1/2].
(23)

In the above, the compression parameter b is to be taken as

the following function of the accuracy parameter ¢ which

is explained shortly.

3-¢
b - 1 - ¢ (24)

The minmod slope-limiter operator is

minmod[x, y] = sign(x) max]0,min{Ixl, y sign(x)}] (25)

Then, the left state at the cell interface at m+ 1/2 and

the right state at the cell interface m - 1/2 can be defined
to be

= Qm+ + T""-'/') "q_+,/_
i

+q,,,_,/_ = q,,, - . _,T'_'-_/_ +

(26)

where
i

rm = ri(qm, (Nm+_/z + N,.n__/z)/2) (27)

At maxima and minima, the minmod operator returns a

zero value and the left and right states reduce to

q;.+,/_ = q_
4-

Qm-l/2 -- Qm

(28)

which result in a first-order accurate scheme locally.

More details on this Euler solver can be found in

Refs. 12-14. Now some results are presented to illustrate

the unified Euler solver capability.

Euler Results

Supersonic Flows -- Figure 12a shows an elliptic waverider

geometry typical of hypersonic configurations. Typically,

waveriders are designed to have a lift-producing lower sur-

face with a freestream aligned upper surface. Figure 12b

shows Mach number contours at different Mach numbers

and angles of attack. At the design point (M_ = 4, a =

0°), the shock is at the leading edge while at off-design flow

conditions the shock moves away from the leading edge.

The upwind, TVD based Euler solver implemented in the

code does not exhibit any numerical instability problems in

capturing strong shocks. Figures 12c and 12d show compar-

isons of surface pressures and pitching moment coefficients

with experimental data 3° and other available methods 3_.
The full potential method compares well with the Euler re-

suits when the shock is weak. The shock strength starts to

become more pronounced for M_ > 4, a > 5 ° as indicated

by the deviation of the isentropic full potential results from

the correct Euler solutions.
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Fig. 12. Euler results for a waverider configuration; a) ge-

ometry and gridding, b) Mach contours at differ-

ent Mach numbers, c) lower surface pressures,

and d) pitching moment correlation.

Mul_izone Compufation -- For treatment of complex three-

dimensional multibody flows, the gasdynamic solvers are

provided with a multizonal capability where the physical

domain of interest is subdivided into multizones requiring

single gridding procedures within each zone. Across the

zonal boundaries proper flux balancing is maintained to

avoid spurious numerical errors originating at the interface.

The zonal interface can be permeable or impermeable and

can also be a boundary of flow discontinuity such as a shock

or sonic surface.

Figure 13 shows the Space Shuttle mated configuration

with the Orbiter mounted on top of the External Tank and

the Solid Rocket Boosters. A single zone gridding that

can treat every component of this multibody as a constant

coordinate surface, though possible, can be cumbersome

to construct. A five-zone gridding in the axial plane is

generated to study this multibody problem at supersonic

Mach numbers. Pressure contours and gridding are shown

at different marching stations for Moo = 1.8, a = 0 °. The

presence of a shock around the Shuttle OMS pod (station

C) is clear.

Transonic Flow Figure 14 shows transonic results for the

ONERA-M6 wing. The double shock pattern on the upper

surface at Moo -- 0.84, c_ = 3.06 ° is well captured by the

Euler code.
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MULTIZONE COMPUTATION
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Fig. 13. Multizone treatment of the Shuttle mated con-

figuration; Moo = 1.8, a = 0%

Navier-Stokes Equations

The purpose in developing powerful, robust and effi-

cient Euler solvers is not just to study inviscid strongly

shocked, rotational flows, but also to use them as a step-

ping stone in devising Navier-Stokes methods for solving

viscous flow problems. Many problems of real interest in

advanced aerospace and configuration development do re-

quire the use of Navier-Stokes methods. Some of the flows

that can only be modeled using the Navier-Stokes equations

are:

1) attached flows with a) tip vortex, b) wing/body junc-

tion vortex, and c) cross-flow leading edge vortex;

2) separated flows (leading edge separation and shock-

boundary layer separation);

3) acoustics/unsteady phenomena (cavity flow and inter-

nal flow-induced vibrations);

4) high Mach number flows with significant heating; and

5) reacting flows (combustion involving chemical kinet-

ics).

Referring to eq. (1), the Reynolds-averaged form of the

Navier-Stokes equations is represented by

-- = PRESENT COMPUTATION
.... FL057 RESULT
o = EXPERIMENT

-1 2 9 ....

o75 

o.12 °

0.5_
2z

--= 0.46
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Fig. 14. Transonic results for the ONERA-M6 wing;

Moo = 0.84, a = 3.06 °.

Q= { pepu)pv;E=E_.=+E_;F=F_.+F.;G=G,=+G.
pW

(29)

where Ein, Fsn, and Gm are the inviscid Euler fluxes given

by eq. (16) and the viscous fluxes E_, F,, and G, are given

by
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Here, Re is the Reynolds number, Pr is the Prandtl num-

ber, r is the thermal conductivity, and T is the specific

internal energy given by T = P/[(? - 1)p]. The terms rx2,

rxy, rxz, r_x, ryy, r_z, rzx, rz_, and rzz are given by

where

au 2

•=== 21,_ - 5._,
tov 2

,. = 2. N - 5.e,
tOw 2

o_),

(31)

tou toy tOw

¢=(_+ _+-_;)

and _u is the coefficient of viscosity.

The viscosity coefficient for turbulent flows is modeled
as the sum of the laminar and turbulent viscosities in the

eddy viscosity approach. The turbulent eddy viscosity is

usually computed using one of two popular techniques, 1)

by using the Baldwin-Lomax or other algebraic eddy vis-

cosity formulation, and 2) by using a two-equation model
such as the k - e formulation.

The k-e model often used is the standard high Reynolds

number form of the equations. Even though the k-e model

can take more time to solve than the simpler algebraic eddy

viscosity models this is justifiable since the k-e model is gen-
erally applicable to a much wider class of flows. The kinetic

energy equation is derived from the Navier-Stokes equations

with the main limiting criterion being that it assumes local

isotropy. The dissipation equation is not exact but is mod-

elled to represent physical processes similar to those of the

kinetic energy equation. Even with these assumptions the

k-e equations have a proven capability of adequately pre-

dicting a large range of complex flows, including anisotropic

ones.

The k-e equations may be solved using the same up-

wind, TVD formulations applied to the Euler and Navier-

Stokes equations. Referring to eq. (1), the k-¢ equations
can be written as

pe ' \ pue - _ _ 'Re ¢9x

I ,k- (32)
Re_yy_ Re _"zz |

C= [\pve_m_o__ ) , D=
I

The only exception is that the k-e equations, in addition
to the above, involve a source term on the right hand side

given by

: . (33)

-- C2p-_ Re

In eqs. (31) and (32),

_,_= (_ + _,/_)

k is kinetic energy, e is turbulent dissipation, and #t is

turbulent eddy viscosity. P represents the production of

kinetic energy and the following simplified form of it is used

+ ,.,_). (34)P = m(u_ + %

The k-e model still employs the eddy viscosity/diffusiv-

ity concept as it relates eddy viscosity to the kinetic energy

and dissipation by

k 2

_,_= c.p- 7. (35)

This eddy viscosity is then used to create an effective vis-

cosity (# + #t) which replaces # in the Reynolds-averaged

Navier-Stokes equations. To solve the above turbulence

model the following constants must be specified: ak = 1.0,

ac = 1.3, C, = 1.44, 6'2 = 1.92, and C_, = 0.09.

One of the highlights of the Navier-Stokes activity is

the modeling of turbulence for separated flows. The new

turbulence model is based on experimental observations of

separated turbulent flows. The model prescribes turbulence

kinetic energy (k) and its dissipation (e) analytically inside

separation bubbles. A Gaussian variation of k normal to

walls is assumed. The length scale of turbulence within

bubbIes is proportional to the local distance from the wall to

the edge of the viscous sublayer, which is located outside the

backflow region, as shown in figure 15. The latter feature
is a basic assumption of the model.

The stress scale is the local maximum Reynolds stress,

which typically occurs around the middle of the boundary

layer, well outside the bubble. This scale must be supplied

by the turbulence model used beyond separated regions.

The main equations of the model are given in Ref. 23.

A simple formula for eddy viscosity distribution within the

separation bubble results, and is used to provide eddy vis-

cosity for the Reynolds-averaged equations when perform-

ing the calculations inside the bubble. Outside of it, an-

other turbulence model (e.g., Baldwin-Lomax or k-e) sup-

plies the values of eddy viscosity.
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Fig. 15. Schematic view of separated flow bubble and ba-
sic nomenclature.

Navier-Stokes Results

The algebraic k-_ turbulence model for separated

flows, in conjunction with the Baldwin-Lomax model, has

been incorporated into a finite volume, time-marching,

multizonal Navier-Stokes code 2a-28, featuring an implicit

upwind-biased scheme, approximate factorization, and To-

tal Variation Diminishing discretization for high accuracy•

When a separation bubble exists, the standard Baldwin-

Lomax or the k-e model is used to compute eddy viscos-

ity outside the backfiow region, while the separation model

(figure 15) provided eddy viscosity within the separation

bubble.

Several unit problems are computed to check the va-

lidity of the Navier-Stokes code with a turbulence model

for treating separated flows.

As a first computational test of the new turbulence

model, a transonic flow calculation over an axisymmetric

boattail with a cylindrical extension (solid plume simulator)

has been performed. Figure 16a shows the chosen geome-

try. This case involves a moderate-sized separation bubble

at the end of the boattail. The data of Ref. 32 at M_ = 0.8

and a Reynold_ number of 1.8 × 10 e, based on maximum

model diameter, were used for comparisons with the calcu-

lations. A 65 x 40 grid was employed, with 23 points normal

to the wall lying inside the separation bubble at the loca-

tion of its maximum height. Figure 16b shows a detail of

the computational mesh.

In figure 16c, pressure coefficient at the wall, calcu-

lated using the new separation turbulence model, is com-

pared with experimental data of Ref. 32 as well as with a

calculation which used the Baldwin-Lomax model by itself.

The figure also indicates the location and extent of the sep-

arated region. The advantage of using the separation model

is demonstrated by the significant improvement in predict-

ing the pressure through the separated zone, compared to

the corresponding calculation without the model.

Figure 16d compares skin friction distribution, as cal-

culated using the new model, with the corresponding cal-

culation done without it. A larger separation bubble is

predicted by the former. No data are available for compar-

ison.
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Fig. 16a. Sketch of boattail with solid plume simulator.
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Fig. 16d. Boattail streamwise skin friction distribution.

99



Thesecondtestoftheseparationmodelwaschosento
beasupersonicflowovera24° compression ramp. Detailed

experimental data are available for this case 33-35, which

involves a rather large separated flow region. The 65 x

35 grid used for the calculations is shown in figure 173.

About 75% of the normal-to-wall mesh points were located

within the shear layer. This case was run at Moo = 2.85

and a Reynolds number based on incoming boundary layer

thickness of 1.6 x 10 a.

Figure 17b shows a comparison between calculations

and experimental data of wall pressure distribution. The

improved predictional capability due to inclusion of the sep-

aration model is evident.

Figure 17c compares calculations with experimental

data of skin friction. The advantage of using the sepa-

ration model over the regular Baldwin-Lomax model is ev-

ident throughout the separation bubble. Incorporation of

the new model enables precise prediction of reattachment

location, a difficult task for this flow.

A streamline plot, resulting from the calculation with

the separation model, is shown in figure 17d. The predicted

extent of the separated region agrees quite well with the

experimentally observed locations of separation and reat-

tachment, also indicated in the figure.

The third test of the new backflow model was the

backward-facing step case reported in Ref. 36, with an

inflow Mach number of 0.128 and a Reynolds number of

31,250 based on inflow conditions and the step height as a

reference length.

Figure 18a shows the geometry and the two-zone com-

putational grid, with a 42 x 22 mesh used in the subdomain

above the step, and a 36 x 20 mesh used in the subdomain

downstream of the step.

Pressure distribution along the step side wall is shown

in figure 18b, as resulting from the current approach and

from Sindir's 37 calculations using the k-e model. Compar-

ison with the data indicates a slight advantage in using the

new algebraic model over the k e model.

Figure 18c shows skin friction distribution on the step

side wall. The new backflow model enables improved pre-

diction and significantly better performance in the reat-

tachment zone. In the vicinity of the step corner, the skin

friction is positive, indicating a small counter-rotating vor-

tex, in agreement with the data.

In figure 18d, streamwise velocity profiles at two loca-

tions are shown, one upstream of the reattachment region,

the other downstream of it. Agreement with the data is

very good at the former location, where the flow is sepa-

rated, and fair at the latter, where a somewhat sluggish

boundary layer recovery is predicted for the lower part of

the profile.

Figure 18e shows Reynolds stress profiles at the loca-

tions corresponding to those of figure 18d. While the shape

of the calculated profile agrees with the experimental one

at the upstream location, the magnitude is overpredicted

roughly by a factor of two. In the downstream location,

however, agreement with data is quite good, although the

lower part of the calculated profile is again overpredicted.
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GEOMETRY AND GRID
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Fig. 18a. Two-zone computational grid and geometry for
backward-facing step.

0,31 I i I I

SKIN FRICTION

I

0.2F- _v v _ -

_ O.lh
oot,v/

-0.1 _-_ -- ._p. MODEL
.... k-it

v DATA

- 0.21 I I I I
0.0 7.2 14.4 21.6 28.8 36.0

X/H

Fig. 18c. Step-side skin friction

distribution.

L

Since store separation and aerodynamic drag due to

open cavities are important issues in design, cavity compu-

tations are vital for validation and prediction. A laminar

three-dimensional cavity computation has been done. The
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1.5

Fig. 1Be. Reynolds stress profiles

specific cavity is a simplified version of the F-111 weapons

bay. Figure 19a shows velocity directions down the center-

line of the cavity. Figure 19b shows the velocity directions

of the secondary motion on a cross plane of the cavity. More

cavity results can be found in Ref. 38.
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Moo =_20 f SPLITTER PLATE

Fig. 20a. Test case geometry.
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Fig. 20[ Plume development

Figure 20a shows an axisymmetric nozzle and the cor-

responding two zone gridding is given in figure 20b. The
external inflow was fixed at Moo = 20, while the nozzle in-

flow Mach number was varied from 4.0 to 1.5. The nozzle

inflow pressure was 217 times that of the external inflow.

For the viscous calculations, the Reynolds number based

on nozzle inflow conditions was varied from 6 x t06/ft at

Mach 4 to 2.25 x 105/ft at Mach 1.5. All solid surfaces were

held at a constant wall temperature Tw = 0.34Too,noz. Cal-

culations for this case were run using both the Reynolds-

averaged Navier Stokes code (RANS) and the Euler code.

Figure 20c shows pressure contours for the Navier-Stokes

computation. Figure 20d compares pressure distributions

on the nozzle wall and on the outer plate surface plus the

wake region downstream of it, as resulting from the RANS

and Euler calculations. Except for the milder corner ex-

pansion due to viscous displacement effects, the two calcu-

lations predict the same nozzle wall pressure distribution.

In the near wake region downstream of the splitter plate,

however, the interaction between the shear layers from both

sides of the plate and the plume-induced shock/boundary

layer interaction in the vicinity of the plate trailing edge

modify the pressure distribution as compared with the in-

viscid prediction. Further downstream the two predictions

coincide. Figure 20e shows skin friction on the two walls, in-

dicating no separation of the boundary layers. The stream-

line plot in figure 20f shows the plume development as pre-

dicted by the RANS code.

Figure 21a shows the geometry and the multizone grid-

ding for a ramjet configuration. Figure 21b shows viscous
Mach number contours for an inflow Mach number of 4.03.

The Navier-Stokes code developed at the Rockwell Sci-

ence Center is still undergoing validation tests on several

unit problems for possible improvements in modeling tur-

bulence of separated flows. Future applications will involve

wings, wing-body combinations at high a, and cavity-store

acoustics and separation studies.

! IlJllllllf
IfllllllllI
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Fig. 21a. Geometry and gridding for a ramjet.

Fig. 2lb. Mach contours, Moo = 4.03.
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Laser-Material Interaction

The paper so far dealt with the development and ap-

plication of computational algorithms for solving aerody-

namic problems. Extension of these CFD methods to solv-

ing problems in other disciplines that are governed by an

appropriate set of partial differential equations is very at-

tractive. One such application is to study the problem of

heat transfer in materials subjected to intense laser heating.

Laser heat treatment of materials (especially iron-base

alloys and carbon-carbon composites) for various industrial

applications is becoming very attractive due to ease in the

controllability and in generation of laser beams. For ex-

ample, use of laser as a heat source in enhancing materi-

als resistance to surface wear and corrosion through solid

state phase transformations (without melting) and rapid

solidification (with shallow melting), in achieving a desired

homogeneous molten weld pool, and in obtaining a unique

surface composition through coating or cladding, as a vi-

able economical process, has been well proven in laboratory

settings. Transitioning this process technology from a labo-

ratory setting to an industrial environment requires a better

understanding of the role of various controlling parameters,

such as the cross section of the laser, power intensity of the

laser, velocity of the moving laser or the workpiece, and the

material properties themselves in determining the quality

of the surface modification process. Optimization of these

controlling process parameters through theoretical model-

ing and computational simulation can lead to achieving the

desired properties of surface treatment.

Figure 22 shows the schematic of a laser melted ma-

terial pool. When the workpiece is swept under the beam,

a self quenched heat treated zone is obtained along the

surface. Dimensions of the melted zone (T > Tin, where

T,n is the melting temperature) and the heat affected zone

(T > To) are controlled by absorbed laser beam power den-

sity, beam size, and travel speed.
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Fig. 22. Surface tension induced convective heat transfer.

The high surface temperature gradients in the melted

zone create a variation of surface tension along the surface

which is balanced by shear forces. This balancing shear

force is created by setting up a counter rotating vortex flow

within the molten zone as described in figure 22.

The physics of modeling the heat transfer process oc-

curring in figure 22 involves both conduction and convec-

tion in a high gradient thermal field. The equation that

best describes the physical phenomena of this problem is

the incompressible Navier-Stokes equations. Referring to

eq. (3), the following describes the coupling between the

temperature field and the velocity field.

(° /pu [ p + pu 2 -- r==

Q= pv ; E= _ puv-v=_ ;
pw l pu,,,- _==
T ( Tu-ot-_

puv - r=p puw - r=z

F = p + pv 2 - ryy ; G = pvw - vyz ;

pvw - ry= p + pw _ - r_z

Tv - _ _ Tw - a araz

k
Ol ---- --

pCp

where rij = v \ o=j + o=, )" Modeling of turbulence in rO-

is neglected in the present formulation and only the laminar
stress tensor is considered.

In these equations, cp is the specific heat, p is the den-

sity, k is the thermal conductivity, T is the temperature,

and v is the kinematic viscosity. The induced velocity field

in the molten pool is represented by uj.

In the unmelted region of the material where the heat

transfer process is purely due to conduction (temperatures

below melting), only the energy equation needs to be solved

for temperature (see Ref. 39).

On the outer surface of the molten pool, the force bal-

ance equations are

(37)

au = a'OT

av a' aT

where a' is the rate of change of surface tension (.N/talk)

with temperature and/_ is the coefficient of viscosity of the

molten pool (N see/m2; N is Newton).

At the liquid-solid interface u = v = w = 0 and T =
Tin. More details on the boundary condition can be found

in Ref. 40.

The computational method employs an implicit triple

approximate factorization scheme to solve the energy equa-

tion in terms of temperature and an explicit treatment for

the three momentum equations and the continuity equa-

tion. The pressure field is updated at each time level using

a Poisson solver to satisfy the continuity equation.
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Laser Results

A sample result for a rectangular workpiece undergoing

melting is presented.

Figure 23 shows results for a typical case (5000 W laser,

4 x 3 mm laser cross section, 1.26 mm/sec beam travel

speed). A point in the workpiece is considered heat af-

fected if that point experienced temperatures above 750°C

and the melt zone corresponds to temperatures _> 1500°C.

At a given instance of time (laser beam around the hallway

length of the workpiece), the instantaneous temperature

distribution, melt zone shape, and the three-dimensional

vortex mixing material flow are shown in the figure. The

cross-sectional view, longitudinal view (plane of symme-

try), and the top view of the melted zone clearly reveal the

convection process induced by the surface tension driven
flow. Pure conduction treatment of this heat transfer prob-

lem (no convection model, i.e., surface tension gradients

set to zero} results in temperature levels not comparable

with experimental observations. The computational proce-

dure of the present study incorporating the surface tension

driven convective heat transfer process produces melt zone

and heat affected zone shapes very similar to experimental

data. More results are presented in Ref. 40.

Application of this work to study problems of deep

welding (solute redistribution, microstructure of the heat

affected zone, and residual stress state) and characteriza-

tion of the surface ripples are some of the ongoing projects.

Electromagnetic Scattering

The objective is to develop time-dependent finite dif-
ference methods to solve the Maxwell equations to study

the problem of electromagnetic scattering from dielectric

and perfectly reflecting objects. Although techniques based

on the integral form of the equations are available, they are

usually restricted in their application due to various simpli-
fications made in the formulation. Solution techniques to

the differential equation usually provide a general-purpose

capability with fewer restrictions than techniques based on

the integral approach. Based on proven CFD methods, it is

desirable to develop an efficient finite difference technique

for the Maxwell equations.

Referring to eq. (1), the Maxwell equations take the

{ex l0/ey --lgz

!e
Q= e_ ; E=

11= _'0 y '

Hz -T Hy

F= c= ,_=
-- _._c I Y

_ _0H=

form

(38)
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Fig. 23. Recirculating flow within the molten pool; beam

power = 5000 W, beam shape = 4 x 3 mm, pro-

cess speed = 1.27 mm/sec.
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where ex, %, and ez are the electric field components along

x, y, and z, and similarly Hx, Hy, and Hz are the mag-

netic field components. The parameters c, _, and a rep-

resent permittivity, permeability, and conductivity of the

medium through which the electromagnetic wave is propa-

gating. Equation (38) is hyperbolic and has real eigenval-

ues and a linearly independent set of eigenvectors. Upwind

schemes developed for the Euler equations are ideal for solv-

ing the Maxwell equations. The objective is to solve eq. (3)

subject to an incident wave to compute the equivalent sur-

face current on the object given by n x H where n is the

surface normal and H is the magnetic field vector. Once

the equivalent surface current is known on the dielectric

object and around any contour encompassing the object,

the radar cross section (RCS) information can be obtained

using a near field-to-far field transformation (Refs. 41,42).

The RCS information depends on the intensity of the scat-

tered wave.

RCS Results

The Maxwell equations in two dimensions can be spe-

cialized for a transverse magnetic (TM) wave (ez = ey =

0, Hz = 0), or for a transverse electric (TE) wave (Hx =

Hy = 0, ez = 0). Development of computational algorithms

for studying electromagnetic scattering from perfectly con-

ducting or dielectric objects can benefit from solving the

TM or the TE wave problem. Preliminary results are re-

ported here for the electromagnetic scattering from a per-

fectly conducting square cylinder for an incident plane wave

of the form el = eosink(rco8(_ - _') - ct) where eo is

the amplitude, k = 2x/A, A is the wavelength, c is the

wave speed, _be is the angle of incident wave with respect

to the x-axis. Figures 24a and 24b show the surface cur-
rent Jz = n x H on the cylinder for two different incident

wave angles. The correlation of n × H obtained using a

simple, first-order accurate, upwind, explicit scheme with

an existing method known as method of moments (MOM)

is good. Knowing this Jz information, the RCS value for
different viewing angles can be computed. Development

of higher order accurate, upwind schemes based on Euler

solvers is currently in progress. Some of the numerical is-
sues to be addressed in this development are 1) higher order

accurate nonreflecting farfield conditions based on charac-
teristic theory, 2) grid resolution requirements for high fre-

quency (small A or large k) incident waves, 3) boundary

condition treatment for radar absorbing materials taking

into account frequency dependence on ¢,/a and _,, 4) multi-

zone gridding techniques for interior and external regions,

and 5) near-field to far-field transformations to derive RCS
values from the near-field n x H and n x E information.
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Fig. 24a Surface current on a square cylinder
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CONCLUSIONS

The state of the art of Computational Fluid Dynamics

has taken rapid strides in recent years with the developme_

and application of unified, robust, and efficient methods.

The advances in CFD are also beginning to make a positive

impact on other areas of mathematical science, leading to

the emergence of the concept of "Computational Science".

In this new spirit, this paper has presented a unification of

algorithms and their application to fluid dynamics, electro-

magnetics, and material characterization.
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